409 research outputs found

    Effects of leaf age during drought and recovery on photosynthesis, mesophyll conductance and leaf anatomy in wheat leaves

    Get PDF
    Summary statement: Mesophyll conductance (gm) was negatively correlated with wheat leaf age but was positively correlated with the surface area of chloroplasts exposed to intercellular airspaces (Sc). The rate of decline in photosynthetic rate and gm as leaves aged was slower for water-stressed than well-watered plants. Upon rewatering, the degree of recovery from water-stress depended on the age of the leaves, with the strongest recovery for mature leaves, rather than young or old leaves. Diffusion of CO2 from the intercellular airspaces to the site of Rubisco within C3 plant chloroplasts (gm) governs photosynthetic CO2 assimilation (A). However, variation in gm in response to environmental stress during leaf development remains poorly understood. Age-dependent changes in leaf ultrastructure and potential impacts on gm, A, and stomatal conductance to CO2 (gsc) were investigated for wheat (Triticum aestivum L.) in well-watered and water-stressed plants, and after recovery by re-watering of droughted plants. Significant reductions in A and gm were found as leaves aged. The oldest plants (15 days and 22 days) in water-stressed conditions showed higher A and gm compared to irrigated plants. The rate of decline in A and gm as leaves aged was slower for water-stressed compared to well-watered plants. When droughted plants were rewatered, the degree of recovery depended on the age of the leaves, but only for gm. The surface area of chloroplasts exposed to intercellular airspaces (Sc) and the size of individual chloroplasts declined as leaves aged, resulting in a positive correlation between gm and Sc. Leaf age significantly affected cell wall thickness (tcw), which was higher in old leaves compared to mature/young leaves. Greater knowledge of leaf anatomical traits associated with gm partially explained changes in physiology with leaf age and plant water status, which in turn should create more possibilities for improving photosynthesis using breeding/biotechnological strategies

    Field application of silicon alleviates drought stress and improves water use efficiency in wheat

    Get PDF
    Detrimental impacts of drought on crop yield have tripled in the last 50 years with climate models predicting that the frequency of such droughts will intensify in the future. Silicon (Si) accumulation, especially in Poaceae crops such as wheat (Triticum aestivum L.), may alleviate the adverse impacts of drought. We have very limited information, however, about whether Si supplementation could alleviate the impacts of drought under field conditions and no studies have specifically manipulated rainfall. Using field–based rain exclusion shelters, we determined whether Si supplementation (equivalent to 39, 78 and 117 kg ha-1) affected T. aestivum growth, elemental chemistry [Si, carbon (C) and nitrogen (N)], physiology (rates of photosynthesis, transpiration, stomatal conductance, and water use efficiency) and yield (grain production) under ambient and drought (50% of ambient) rainfall scenarios. Averaged across Si treatments, drought reduced shoot mass by 21% and grain production by 18%. Si supplementation increased shoot mass by up to 43% and 73% in ambient and drought water treatments, respectively, and restored grain production in droughted plants to levels comparable with plants supplied with ambient rainfall. Si supplementation increased leaf-level water use efficiency by 32–74%, depending on Si supplementation rates. Water supply and Si supplementation did not alter concentrations of C and N, but Si supplementation increased shoot C content by 39% and 83% under ambient and drought conditions, respectively. This equates to an increase from 6.4 to 8.9 tonnes C ha-1 and from 4.03 to 7.35 tonnes C ha-1 under ambient and drought conditions, respectively. We conclude that Si supplementation ameliorated the negative impacts of drought on T. aestivum growth and grain yield, potentially through its beneficial impacts on water use efficiency. Moreover, the beneficial impacts of Si on plant growth and C storage may render Si supplementation a useful tool for both drought mitigation and C sequestration

    A foliar pigment-based bioassay for interrogating chloroplast signalling revealed that carotenoid isomerisation regulates chlorophyll abundance

    Get PDF
    Background: Some plastid-derived metabolites can control nuclear gene expression, chloroplast biogenesis, and chlorophyll biosynthesis. For example, norfurazon (NFZ) induced inhibition of carotenoid biosynthesis in leaves elicits a protoporphyrin IX (Mg-ProtoIX) retrograde signal that controls chlorophyll biosynthesis and chloroplast development. Carotenoid cleavage products, known as apocarotenoids, also regulate plastid development. The key steps in carotenoid biosynthesis or catabolism that can regulate chlorophyll biosynthesis in leaf tissues remain unclear. Here, we established a foliar pigment-based bioassay using Arabidopsis rosette leaves to investigate plastid signalling processes in young expanding leaves comprising rapidly dividing and expanding cells containing active chloroplast biogenesis. Results: We demonstrate that environmental treatments (extended darkness and cold exposure) as well as chemical (norfurazon; NFZ) inhibition of carotenoid biosynthesis, reduce chlorophyll levels in young, but not older leaves of Arabidopsis. Mutants with disrupted xanthophyll accumulation, apocarotenoid phytohormone biosynthesis (abscisic acid and strigolactone), or enzymatic carotenoid cleavage, did not alter chlorophyll levels in young or old leaves. However, perturbations in acyclic cis-carotene biosynthesis revealed that disruption of CAROTENOID ISOMERASE (CRTISO), but not ZETA-CAROTENE ISOMERASE (Z-ISO) activity, reduced chlorophyll levels in young leaves of Arabidopsis plants. NFZ-induced inhibition of PHYTOENE DESATURASE (PDS) activity caused higher phytoene accumulation in younger crtiso leaves compared to WT indicating a continued substrate supply from the methylerythritol 4-phosphate (MEP) pathway. Conclusion: The Arabidopsis foliar pigment-based bioassay can be used to diferentiate signalling events elicited by environmental change, chemical treatment, and/or genetic perturbation, and determine how they control chloroplast biogenesis and chlorophyll biosynthesis. Genetic perturbations that impaired xanthophyll biosynthesis and/or carotenoid catabolism did not affect chlorophyll biosynthesis. The lack of CAROTENOID ISOMERISATION reduced chlorophyll accumulation, but not phytoene biosynthesis in young leaves of Arabidopsis plants growing under a long photoperiod. Findings generated using the newly customised foliar pigment-based bioassay implicate that carotenoid isomerase activity and NFZ-induced inhibition of PDS activity elicit different signalling pathways to control chlorophyll homeostasis in young leaves of Arabidopsis

    Synthetic biology and opportunities within agricultural crops

    Get PDF
    Conventional breeding techniques have been integral to the development of many agronomically important traits in numerous crops. The adoption of modern biotechnology approaches further advanced and refined trait development and introduction beyond the scope possible through conventional breeding. However, crop yields continue to be challenged by abiotic and biotic factors that require the development of traits that are more genetically complex than can be addressed through conventional breeding or traditional genetic engineering. Therefore, more advanced trait development approaches are required to maintain and improve yields and production efficiency, especially as climate change accelerates the incidence of biotic and abiotic challenges to food and fibre crops. Synthetic biology (SynBio) encompasses approaches that design and construct new biological elements (e.g., enzymes, genetic circuits, cells) or redesign existing biological systems to build new and improved functions. SynBio ‘upgrades’ the potential of genetic engineering, which involves the transfer of single genes from one organism to another. This technology can enable the introduction of multiple genes in a single transgenic event, either derived from a foreign organism or synthetically generated. It can also enable the assembly of novel genomes from the ground up from a set of standardised genetic parts, which can then be transferred into the target cell or organism. New opportunities to advance breeding applications through exploiting SynBio technology include the introduction of new genes of known function, artificially creating genetic variation, topical applications of small RNAs as pesticides and potentially speeding up the production of new cultivars with elite traits. This review will draw upon case studies to demonstrate the potential application of SynBio to improve crop productivity and resistance to various challenges. Here, we outline specific solutions to challenges including fungal diseases, insect pests, heat and drought stress and nutrient acquisition in a range of important crops using the SynBio toolkit

    Limited hydraulic recovery in seedlings of six tree species with contrasting leaf habits in subtropical China

    Get PDF
    Subtropical tree species may experience severe drought stress due to variable rainfall under future climates. However, the capacity to restore hydraulic function post-drought might differ among co-occurring species with contrasting leaf habits (e.g., evergreen and deciduous) and have implications for future forest composition. Moreover, the links between hydraulic recovery and physiological and morphological traits related to water-carbon availability are still not well understood. Here, potted seedlings of six tree species (four evergreen and two deciduous) were grown outdoors under a rainout shelter. They grew under favorable water conditions until they were experimentally subjected to a soil water deficit leading to losses of ca. 50% of hydraulic conductivity, and then soils were re-watered to field capacity. Traits related to carbon and water relations were measured. There were differences in drought responses and recovery between species, but not as a function of evergreen or deciduous groups. Sapindus mukorossi exhibited the most rapid drought response, which was associated with a suite of physiological and morphological traits (larger plant size, the lowest hydraulic capacitance (Cbranch), higher minimum conductance (gmin) and lower HV (Huber value)). Upon re-watering, xylem water potential exhibited fast recovery in 1–3 days among species, while photosynthesis at saturating light (Asat) and stomatal conductance (gs) recovery lagged behind water potential recovery depending on species, with gs recovery being more delayed than Asat in most species. Furthermore, none of the six species exhibited significant hydraulic recovery during the 7 days re-watering period, indicating that xylem refilling was apparently limited; in addition, NSC availability had a minimal role in facilitating hydraulic recovery during this short-term period. Collectively, if water supply is limited by insignificant hydraulic recovery post-drought, the observed carbon assimilation recovery of seedlings may not be sustained over the longer term, potentially altering seedling regeneration and shifting forest species composition in subtropical China under climate change.This work was supported by grants from the National Natural Science Foundation of China (31600483 and 31760111) and the Natural Science Talent Funding of Guizhou University (202132)

    Intraspecific variation in juvenile tree growth under elevated CO2 alone and with O3: a meta-analysis

    Get PDF
    Atmospheric carbon dioxide (CO2) concentrations are expected to increase throughout this century, potentially fostering tree growth. A wealth of studies have examined the variation in CO2 responses across tree species, but the extent of intraspecific variation in response to elevated CO2 (eCO2) has, so far, been examined in individual studies and syntheses of published work are currently lacking. We conducted a meta-analysis on the effects of eCO2 on tree growth (height, stem biomass and stem volume) and photosynthesis across genotypes to examine whether there is genetic variation in growth responses to eCO2 and to understand their dependence on photosynthesis. We additionally examined the interaction between the responses to eCO2 and ozone (O3), another global change agent. Most of the published studies so far have been conducted in juveniles and in Populus spp., although the patterns observed were not species dependent. All but one study reported significant genetic variation in stem biomass, and the magnitude of intraspecific variation in response to eCO2 was similar in magnitude to previous analyses on interspecific variation. Growth at eCO2 was predictable from growth at ambient CO2 (R2 = 0.60), and relative rankings of genotype performance were preserved across CO2 levels, indicating no significant interaction between genotypic and environmental effects. The growth response to eCO2 was not correlated with the response of photosynthesis (P > 0.1), and while we observed 57.7% average increases in leaf photosynthesis, stem biomass and volume increased by 36 and 38.5%, respectively, and height only increased by 9.5%, suggesting a predominant role for carbon allocation in ultimately driving the response to eCO2. Finally, best-performing genotypes under eCO2 also responded better under eCO2 and elevated O3. Further research needs include widening the study of intraspecific variation beyond the genus Populus and examining the interaction between eCO2 and other environmental stressors. We conclude that significant potential to foster CO2-induced productivity gains through tree breeding exists, that these programs could be based upon best-performing genotypes under ambient conditions and that they would benefit from an increased understanding on the controls of allocation.We acknowledge the support from the Erasmus Mundus Master Course Mediterranean Forestry and Natural Resources Management (MEDfOR), Ramón y Cajal Fellowships (RYC-2012-10970 to V.R.d.D. and RYC-2008-02050 to J.P.F.), an Australian Research Council Discovery grant (DP130102576 to V.R.d.D.), an Australian Science Industry and Endowment Fund (RP04- 122 to D.T.T.) and the Spanish project FENOPIN (AGL2012-40151-C03-03 to J.V., J.P.F. and V.R.d.D.)

    Drought impacts on tree root traits are linked to their decomposability and net carbon release

    Get PDF
    Root trait plasticity can facilitate plant adjustment to water shortages, but the impact of altered traits on belowground carbon (C) cycling is mostly unknown. While drought and nutrient availability can alter root morphological and chemical traits that may affect root decomposition, direct assessments of drought mediated changes on decomposability are not available. We exposed four tree species contrasting in drought stress tolerance and root traits to three dry-down and recovery periods (over 5 months after 11 months of growth in well-watered conditions) under high and low nutrient conditions. We then assessed early stage root decomposability in relation to their morphology and chemistry as well as implications for CO2 release when accounting for effects on root biomass. While each species showed a unique set of responses, drought generally reduced root diameter and increased nitrogen concentration. We found limited evidence that morphological responses to drought were counteracted by high nutrient supply. Results indicated that the degree of association between morphological and nutrient root trait responses to drought and decomposability varied with different species. However, across these contrasting woody species, drought-induced increases in nitrogen and phosphorus concentrations were associated with drought-induced increases in early stage root decomposability. When accounting for changes in root biomass, estimated overall C loss through root decomposition increased with drought stress. Our experimental results demonstrate that changes in tree root traits with drought can enhance C loss via root decomposition, and with other factors being equal, drought may potentially contribute to a positive feedback to climate change. Our findings contribute empirical evidence to help disentangle the multiple factors involved in root contribution to C balances at the ecosystem level

    Sustainable protected cropping : a case study of seasonal impacts on greenhouse energy consumption during capsicum production

    Get PDF
    Sustainable food production in protected cropping is increasing rapidly in response to global climate change and population growth. However, there are significant knowledge gaps regarding energy consumption while achieving optimum environmental conditions for greenhouse crop production. A capsicum crop cultivated in a high-tech greenhouse facility in Australia was analysed in terms of relationships between key environmental variables and the comparative analysis of energy consumption during different seasons. We showed that daily energy consumption varied due to the seasonal nature of the external environment and maintenance of optimal growing temperatures. Total power consumption reported throughout the entire crop cycle for heating (gas hot water system) and cooling (pad and fan) was 12,503 and 5183 kWh, respectively; hence, heating consumed ca. 70% of the total energy requirement over the 8-month growing period (early spring to late autumn) in the greenhouse facility. Regressions of daily energy consumption within each season, designated either predominantly for heating or cooling, indicated that energy consumption was 14.62 kWh per 1 °C heating and 2.23 kWh per 1 °C cooling. Therefore, changing the planting date to late spring is likely to significantly reduce heating energy costs for greenhouse capsicum growers in Australia. The findings will provide useful guidelines to maximise the greenhouse production of capsicum with better economic return by taking into consideration the potential optimal energy saving strategy during different external environment conditions and seasons

    Precise phenotyping for improved crop quality and management in protected cropping : a review

    Get PDF
    Protected cropping produces more food per land area than field-grown crops. Protected cropping includes low-tech polytunnels utilizing protective coverings, medium-tech facilities with some environmental control, and high-tech facilities such as fully automated glasshouses and indoor vertical farms. High crop productivity and quality are maintained by using environmental control systems and advanced precision phenotyping sensor technologies that were first developed for broadacre agricultural and can now be utilized for protected-cropping applications. This paper reviews the state of the global protected-cropping industry and current precision phenotyping methodology and technology that is used or can be used to advance crop productivity and quality in a protected growth environment. This review assesses various sensor technologies that can monitor and maintain microclimate parameters, as well as be used to assess plant productivity and produce quality. The adoption of precision phenotyping technologies is required for sustaining future food security and enhancing nutritional quality
    • …
    corecore